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Introduction

- What makes space-based observation
scheduling hard?

» Oversubscription: too many science requests,
too few observers

 Flexibility: too many opportunities to observe

* Time-varying slew costs (Pralet and Verfaillie
2014; Lemaitre et al. 2002)

* Problem statement

» Find the largest value tour within a graph that
has asymmetric, bidirectional edges, time-
varying edge weights, cycles and revisits

- Similar problems are generally NP-hard or NP-
complete (Karger, Motwani, and Ramkumar
1997; Lemaitre et al. 2002; Ichoua, Gendreau,
and Potvin 2003; Pinedo 2012; Hall and
Magazine 1994)
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Related work

« Squeaky Wheel Optimization (Joslin and Clements, 1999)

» Genetic algorithms: Earth Observing Satellite Scheduling
Problem (Globus et al. 2004)

« Greedy stochastic search with resource-aware heuristics for
the EOS Scheduling problem (Frank et al. 2001)

- Stitched window planning (Aldinger et al. 2013)

- Parallel tabu search for traffic-aware fleet vehicle routing (
Ichoa, Gendreau and Potvin 2003)

» Time-dependent Simple Temporal Networks (Pralet and
Verfaillie 2014)
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Outline

* Formulation
* Experiments
* Results

* Discussion
* Future work
» Conclusion
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Formulation
Why a Hybrid Algorithm?

Squeaky Wheel Insertion Search (TSP)

Value optimization Strength Weakness
Complexity s2+(N-s), s\ N3
(including time,

resource propagation) Strength Weakness
Utility, Efficiency Weakness Strength

* The two are complementary — combine. \

 Problem: insertion search is N3 .
« Compromise: quality for speed. r n (window i) ﬁ
» Constraint insertion search to <N o LT T T D
sliding window. \YJ
« Maintain contracts at window edges n (window i-1) m

as Aldinger et al. do (2013).
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Formulation

« Seed the Initial schedule
using SWO until

@ convergence
* Repeat sliding window
Squeaky Wheel Optimization S Iterate rep|anning with a fill phase
v until the schedule score
Sliding Window Replan doesn’t increase.

¢ Iterate

Fill Schedule with Unsatisfied Visits

®
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Requests, TCNs, and Visits

* Requests — User defined
science targets with
geometric constraints

* Visits — an atomic scheduling

. Request A
unit of work
. . . TCN A
* Observations — Individual v <
. . Y
frames that satisfy a visit Vs i visit 11— ->|visi 2
L

o oo

Dechter, Meiri, and Pearl 1991
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Temporal Constraint Networks

Request A
TCN A
Y- .
———>i Visit 1 i————) Visit 2
]
/ |

@

Possible Schedule (one of many)

H A: Visit 2 ' +time
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Squeaky Wheel Optimization Josinand clements 1999

2. Find all opportunities

Opportunities

Timeline

1. Choose the highest

scheduler priority
request in the queue
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3. Attempt to schedule

4. If sched

hE

qﬁiﬁ@rllest interval
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Value-based Scoring

Priority Value Score

« Schedule is deemed more
valuable if a single request
with a higher priority is
scheduled

Pmin = min (p;, (p;, ;) € R : ry satisified)
fswo =|(pi, i) € R : 1y satisified A p; = pmin|
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Satisfaction Value Score

- Schedule score a function of
% visits detailed scaled by
their priority

f i |v; € Vpen,i @ v; is detailed|
t = w;
= Vren.il
1
1 1< ps
w; = Pi = Pi

jpl.nasa.gov

Sponsorship acknowledged.



Cost-based Scoring

Time Cost Score Slew Cost Score
* Penalizes idle time * Penalizes larger slew angles
leost = Z (tstart,i—i—l - tend,i) b = Z |(;£3?;’é_|_1‘
1 ) 1 < tcost 1 1 < (I)
ime — teost ’ o _ )& >~
ft {2 - tcost: tcost < 1| fslew {2 — (1) (1) < 1

» The scheduler utilizes Time Cost Score when there are multiple visits from a
single request within the current scheduling window
» For all other cases, Slew Cost Scoring is used
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Sliding Window Replanning

The optimal path is not constructed with sliding window
replanning

Local scope of scheduling prevents optimizations outside of
the window
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Insertion Heuristic

Note: Scoring complications occur when a W

window contains 2 visits of the same request
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Toy Problem - Description

» 29 requests in a ring

- Carefully constructed
priorities in order to force
edge crossings

» Use sliding window
scheduler to fix edge
crossings

Googleearth
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Toy Problem - Results

SWO Only SWO-TSP Hybrid
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Toy Problem - Results

© c Click 1o toggle time slider animation. Aq K

1 12014_12:33:00 pm
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Image Landsat / Copernicus G()Ogle earth
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Random Points - Description

1000 random (uniform) point
requests

Random priorities

Random (uniform)
distribution of geometric
constraints per request

3 agility cases (low, medium,
high)

‘v’

. Data¥sI@ NOAA, U'S. Navy, NGA,GEBCO
Image“lfandsawsEopernicus ¥ ; s
Image IBCAO G()O:,}[C earth
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Random Points - Results

» Lower agility cases see a
larger improvement in

request satisfaction over score
multiple iterations

f..: Te€lative improvement

1.045
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» Algorithmic runtime costs
versus the baseline schedule
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Discussion

1. TSP Replanner is Sensitive to Input Order

= 9 T T | T
g5 :
Q 7 ]
c 6 i
©
o > ]
T 4 _
: :
n 2

0.0 0.5 1.0 15 20 25 3.0 35 4.0 4.5

Minutes
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Discussion

2. Replanning may fail to maintain f_,

: :
\

Replan !

|
\
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Discussion

3. Complexity Control: Scratchpads

Schedule being

Replanning Window
replanned (source)

Visit 1 P Visit 2 Visit 1 Visit 3 Visit 1 Visit 2 Visit 2 Visit 4 Visit 3 Visit 3 » Visit 4 Visit 4 + Time
/ b,
Scratchpad
T T
> Visit 3 1> Visit 4 |
_______ 1 b —
T _______I\i_______l
! Visit 1 > Visit 2 | ! Visit 2 I
[ 1 .___l___l L___I___l
| |
\ 4 \ 4
Visit 2 Visit 1 Visit 3 Visit 3 + Time
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Future Work

Initial Schedule Seeding

Replace the insertion heuristic

Maintain the sliding window and incrementally improve
Different score functions

© 2017 California Institute of Technology. ALL RIGHTS RESERVED. United States Government

Sponsorship acknowledged. Jpl -nasa.gov



Conclusion

280 12:40:00

UTS 2014/10/07 (280) 201410007 (280) 201410007 (280)
12:33:00 12:34:00 12:35:00

OrientationTimeLine_hybrid II |‘ ‘" ”lllllll‘lllllllll
CrlentafionTime Ina_swo F HIIEEEREIN I .
« SWO is poor at optimizing the path to satisfy requests when
there is no feedback from "squeaky” requests
- Sliding window replanning ignores priority to improve the
current seeded schedule.

« Gaps form for large or constrained requests to be satisfied
during the fill phase.

» Schedule score doesn’t improve much for agile systems as
slew duration is no longer the constraining resource.
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